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Abstract A two-dimensional analytical solution is derived for the three-omega
method for measurement of thermal conductivity of materials with a fine wire. The
analytical solution includes the wire heat capacity and the effect of heat losses from
the ends of the wire. To derive the solution, finite Fourier transforms are applied in the
direction parallel to the wire axis. The solution is compared with a one-dimensional
solution and experimental data. It is found that heat losses from the wire ends have a
significant effect on the 3ω components at low frequency and tend to be less important
at high frequency. Moreover, it is shown that two-dimensional effects will be severe
for nano-scale wires, even if the wire length-to-diameter ratio is very large.

Keywords Gas · Hydrogen · Nano wire probe · Three-omega ·
Two-dimensional analytical solution · Thermal conductivity

List of symbols
cp Heat capacity at constant pressure
f Frequency
Io Magnitude of the oscillating current
K0 Modified Bessel function of 0th order
K1 Modified Bessel function of 1st order
K Kernel function
l Length of the wire
Po Time-average of power (=I 2

o RT /2)
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r0 Radius of the wire
r r-coordinate
RT Resistance of the wire at temperature T + T0
R0C Resistance of wire at 0 ◦C
t Time
T Temperature change relative to T0

T n Fourier transform for temperature
Tavg Volume-averaged oscillation temperature component
T0 Initial temperature of the bath (◦C)

VY Out-of-phase 3ω voltage component
VX In-phase 3ω voltage component
Vfg3ω 3ω voltage in function generator signal
X Magnitude of 3ω voltage of in-phase component
Y Magnitude of 3ω voltage of out-of-phase component
z z-coordinate

Greek symbols
αs Thermal diffusivity of the sample
β Temperature coefficient of resistance (=(dRT /dT ) · R−1

0C )

γ Euler’s constant (0.5772…)
λs Thermal conductivity of the sample
λw Thermal conductivity of the wire
ρ Density
ω Phase frequency (rad · s−1)

Subscripts
avg Average
gen Signal generator
max Maximum
min Minimum
ref Reference resistor
w Properties of the wire

1 Introduction

The three-omega method is attractive for measuring thermal conductivity, because
only a small sample is required and the experiment is relatively simple. The heating
element is typically either a metallic strip adhered to (or plated onto) a solid sample
[1,2] or a fine wire immersed in a fluid or powder sample [3,4]. One-dimensional ana-
lytical solutions for the 3ω voltage components are available for both of these cases
[1–4]. In the case of the heated strip, potential taps are also usually included in the
plated pattern far enough from the ends of the line to eliminate edge effects and thus
to justify a one-dimensional analysis [1]. Cahill [1,2] derived 3ω voltage components
using a one-dimensional analytical treatment for cases where the strip is attached to
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the sample directly. Griesinger et al. [4] performed two-dimensional numerical simu-
lations for a fine wire heated by a very low-frequency oscillating current (<1 Hz). Their
simulations showed some agreement with their one-dimensional analytical solution
for samples with thermal conductivities higher than 0.05 W · m−1 · K−1. On the other
hand, for lower thermal-conductivity samples the agreement was poorer. Griesinger
et al. attributed this to heat losses including the neglect of the cold end effect and
neglect of the wire heat capacity in the analytical analysis. They concluded that heat
loss corrections may be essential for the further development of the periodic hot
wire method (viz. 3ω method), particularly in the case of a low thermal-conductivity
sample.

Wang et al. [3] applied the three-omega method to measurement of nano-fluid ther-
mal conductivities using a 17 µm diameter platinum wire, 8 mm in length. They used
a one-dimensional analysis derived on the basis that the length of the wire is much
greater than the radius. To validate the calibration of their apparatus, they reported
a measurement of the thermal conductivity for water at 20 ◦C of 0.58 W · m−1 · K−1

which is within a few percent of the value recommended by the International Asso-
ciation for the Properties of Water and Steam (IAPWS) [5]. Wang et al. [3] also
suggested that natural convection effects may be reduced by increasing the frequency
of the oscillating current.

In most of the studies done until now, the three-omega method has been applied
to determination of the thermal conductivity or heat capacity of solids, thin films,
powders, and liquids. Through the use of a high vacuum and a different theoretical
formulation, three-omega methods are also available to measure the properties of the
heating element itself. Lu et al. [6] and Yi et al. [7] derived one-dimensional solutions
to determine specific heat and thermal conductivity of wire specimens and nanotube
bundles. Application of the three-omega method to the measurement of gas phase
properties is still difficult. One important reason for this is that we do not obtain a
straight line when we plot the in-phase 3ω voltage component against the logarithm of
the frequency. In a recent study, we showed that this non-linearity is due to the fact that
the effect of the wire heat capacity becomes large for gas samples [8]. This is incon-
venient because in Cahill’s experiment, the slope of the straight line is used directly
to determine the thermal conductivity of the sample [1]. Therefore, to derive thermal
conductivity of a gas by the three-omega method, we need to employ some kind of
curve-fitting procedure or we need to use an extremely fine wire (diameter <1 µm).
Curve fitting procedures have been used in three-omega methods for measuring the
properties of the wire [6].

One-dimensional solutions that include a consideration of wire properties can be
found in Ref. [3], however we are unaware of any published solution for the two-
dimensional case. The solution we derive in the present article could be the basis
for a more generalized curve-fitting procedure to determine thermal conductivity for
situations where both the wire heat capacity and end effects are important. It is suit-
able for application to a small sample with a short wire, similar to that used in the
transient short-hot-wire method developed by Fujii et al. [9]. Our own present appli-
cation of interest is measurement of the thermal conductivity of hydrogen gas from
atmospheric pressure to 100 MPa. The three-omega method is attractive since a small
pressure vessel is in keeping with safety regulations.
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Based on these motivations, a two-dimensional analytical solution is derived for
the three-omega voltage components including wire heat capacity and end effects. By
the use of finite Fourier transforms, the two-dimensional problem is reduced to a set of
one-dimensional characteristic problems. The form of each one-dimensional equation
is somewhat similar to that of our previous study [8], so that finally the derivation can
proceed in a similar manner. The importance of the end-effect correction we suppose
is greater at low frequencies, small wire aspect ratios, and for high thermal-diffusivity
samples. At low frequencies, in-phase and out-of-phase voltage components are larger
than at high frequencies, and thus they are easier to measure accurately. Therefore the
present correction can be tested experimentally and may become valuable if it can
extend the range of valid data to include more of the low-frequency region. Finally,
the derived analytical solution is compared with three-omega voltage components
measured from a fine platinum wire in air at atmospheric pressure.

2 Two-Dimensional Physical Model

The two-dimensional physical model is illustrated in Fig. 1. The partial differential
equation for heat conduction in cylindrical coordinates is given by

1

r

∂T

∂r
+ ∂2T

∂r2 + ∂2T

∂z2 = 1

αs

(
∂T

∂t

)
(1)

and the boundary condition at the wire and the sample interface, r = r0, along the wire
is described by Eq. 2. Equation 3 shows the temperature boundary condition for the

Fig. 1 Domain and boundary
conditions for two-dimensional
analytical solution

r=0 r=ro

z=0

z=L

r=infinite

T=0

dT /dz=0
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sample in which the effect of the cell wall is neglected by assuming that frequencies
are sufficiently high so that the penetration of the thermal oscillations does not reach
the wall.

−2πr0λs
∂T

∂r

∣∣r=r0 = P

l
+ πr2

0 λw
∂2T

∂z2 |r=r0 − πr2
0

(
ρcp

)
w

∂T
∂t

∣∣r=r0 (2)

T |r→∞ = 0 (3)

T |z=0 = ∂T

∂z

∣∣∣
z=L

= 0 (4)

In Eq. 2 we have neglected the radial temperature gradient in the wire but not the axial
temperature gradient. The range of the variable z in Eqs. 1 and 2 is (0 ≤ z ≤ L) where
L is a half of the wire length. The wire is heated by an oscillating current, Io cos(ωt).
In Eq. 2, P = RT (Iocos(ωt))2 is the power supplied to the total wire length, l = 2L .
Since the resistance changes slightly with temperature, for evaluating the power in an
experiment, RT should be taken to be the time-averaged resistance of the wire. For
simplicity, in the present simulations we take RT to be the electrical resistance of the
wire at the bath temperature. Rather than including an initial condition, we consider
only the ‘steady oscillation’ part of the solution. Equation 4 provides the necessary
z-boundary conditions for both Eqs. 1 and 2. The partial derivatives of T (r, z, t), with
respect to the variable z can be eliminated from the problem by applying Fourier
transforms in the z direction. The problem then reduces to a one-dimensional prob-
lem. After solving the one-dimensional problem and applying the inverse transform,
the average magnitude of the oscillating temperature over the wire length is used for
calculating the three-omega voltage components. The final results for the in-phase
(VX ) and the out-of-phase (VY ) three-omega voltage components are given in Eq. 5.
See the Appendix for the details of the derivation.

VX = X cos 3ωt = I 3
o R0C RT β

πl3

∞∑
n=1

1

m2
n

(
(B D − AC)(

C2 + D2
)

)
cos 3ωt

VY = Y sin 3ωt = I 3
o R0C RT β

πl3
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n=1

1

m2
n

(
(AD + BC)(

C2 + D2
)

)
sin 3ωt

(5)

where A, B, C, D, and mn are defined in Eq. 6a, 6b, 6c, 6d, and 6e.

A = ln

(
r0

2

(
4ω2

α2
s

+ m4
n

)1/4
)

+ γ (6a)

B = 1

2
tan−1

(
2ω

αsm2
n

)
(6b)
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C = λs − A
r2
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n
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)
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2
(6d)

mn = π

(
2n − 1

l

)
(6e)

3 Experiment

To test the present analytical solution, an experiment was conducted with air at atmo-
spheric pressure. Figure 2 shows the experimental setup. A 10 µm platinum wire of
length 15.6 mm is enclosed in a stainless steel cylindrical vessel with an inside diam-
eter of 30 mm and height of 47 mm. The wire is spot-welded onto 1.5 mm diameter
platinum lead terminals. The oscillating current is generated by a signal generator
WF1974 (NF Corporation) which has an internal resistance of 50 	. The three-omega
voltage components were extracted using a lock-in-amp, DSP 7265 (Signal Recovery).
The reference signal input to the lock-in-amp was the voltage drop across a 25 	 ref-
erence resistor connected in series with the platinum wire in the thermal conductivity
cell. The cell was immersed in a thermostatic bath to ensure stable thermal condi-
tions. As an additional check, the lock-in-amp shown in Fig. 2 was replaced with a
2-channel, 24-bit high-speed analog/digital converter, PXI-5922 (National Instru-
ments) and the experiment was repeated. Fourier transforms were used to extract
the three-omega components from the voltage signal measured by the A/D board

Rref = 25 Ω Rgen = 50 Ω

Signal generator 

Thermal conductivity cell 

Lock-in-amp/

A/D board 

Ref. input 

Signal input 

10 µm
Pt wire 

Fig. 2 Experimental setup
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converter. To compensate for the fact that the function generator produces an alternat-
ing voltage rather than a pure alternating current, the 3ω voltage components in Eq. 5
are multiplied by the factor (Rgen + Rref)/(RT + Rgen + Rref) prior to comparison with
the experimental data. The derivation for this correction factor is given in a previous
study [8] where the key assumption is that the function generator can be modeled as
a perfect oscillating voltage source (Vfg3ω = 0) in series with its internal resistance
as illustrated in Fig. 2. It is worth mentioning that this correction factor is not needed
in the circuit of Cahill [1] or in bridge circuits which make use of the A-B function
of the lock-in-amp [3]. Moreover, the effect of imperfections in the signal generator
(Vfg3ω �= 0) can also be reduced through the use of bridge circuits or by direct mea-
surement of the 3ω components in the voltage across the reference resistor in Fig. 2 [8].

4 Results

4.1 Comparison with Experiment

To validate the applicability of the present analysis to gases, the analytical solution
was compared with experimental data for air at a temperature of 20 ◦C. The range
of frequencies was from 5 Hz to 1 kHz, with 1.55 V for the signal generator voltage.
For this setting with the circuit in Fig. 2, the magnitude of the oscillating current Io is
about 16 mA. The aspect ratio (l/D) of the wire is 1560. Figure 3 shows the present
analytical result compared with the experimental data. The two-dimensional analytical
solution (solid-line) gives a lower estimation than the one-dimensional analytical solu-
tion (dashed-line) due to the heat losses at the ends of the wire. The one-dimensional
solution, which is derived in the previous study [8], includes the heat capacity of the
wire. At low frequency, the in-phase 3ω components (X) measured by the lock-in-amp
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Fig. 3 Experimental data compared with the analytical solution (Io ≈ 16 mA)
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(open triangles) are a little lower than those measured by the A/D board (open circles).
On the other hand, the out-of-phase components (Y ) (filled symbols) measured by the
lock-in-amp are generally a little larger than the corresponding values measured by
the A/D board. Nevertheless, the agreement between the experimental data collected
by the A/D board and the present solution is within about 10 % of the magnitudes of
the 3ω voltage components at frequencies less than about 50 Hz. Moreover, the 2D
solution is in better agreement with the experimental data than the 1D solution.

Although not clear in Fig. 3, the A/D board data appeared to have much less noise
than the lock-in-amp data. The output from the lock-in-amp did not stay constant with
time but oscillated about the values shown in Fig. 3. Therefore we consider that the
A/D board data is more reliable. We expect that the lock-in-amp data may be improved
by subtracting the 1ω signal component prior to analysis with the instrument [1]. Also,
as mentioned above, in the case of a real signal generator (Vfg3ω �= 0) the experimen-
tal result of the present study will be in error by an amount corresponding to the 3ω

spurious signal in the source [8].
The difference between the calculation and experiment may be attributed to uncer-

tainties in the length and diameter of the platinum wire, imperfections in the gener-
ated signal and to heat losses by natural convection. Some of these effects could be
compensated for by calibration of the wire in a fluid of known thermal conductivity.
It is also worth mentioning here that Io = 16 mA for air with the present geometry
corresponds to an average wire temperature rise of around 9 K. The increase in the
thermal conductivity of air due to this temperature rise is less than 3 %. Using a smaller
current with the present circuit arrangement is desirable but was found to result in a
lower quality 3ω-voltage signal as explained in a previous study [8]. In spite of these
difficulties, the experimental results shown in Fig. 3 indicate that the present solution
is applicable to gases.

4.2 End Effects in Relation to Frequency, Sample Properties, and Aspect Ratio

Further simulations were done for hydrogen, water, and toluene at 20 ◦C as shown in
Figs. 4, 5, and 6. The circuit is the same as that shown in Fig. 2. Also, the geometry
and electrical current are similar to those used in the experiment to allow comparison
with the results for air shown in Fig. 3. For the simulations, a platinum wire is used
with a 10 µm diameter and a 15 mm length. Thus the aspect ratio is 1500. The function
generator voltage in the simulations in Figs. 4, 5, and 6 was 2.4 V peak to peak, which
for the circuit in Fig. 2 gives Io ≈ 12 mA. In all of the simulations, the results from
Eq. 5 are multiplied by the factor (Rgen + Rref)/(RT + Rgen + Rref) to be consistent
with the circuit used in the experiment.

It may be observed from Figs. 3, 4, 5, and 6 that the difference between the one- and
two-dimensional solutions is greater at lower frequencies. Thus the present study con-
firms that an end-effect correction is needed at low frequencies and is less important at
high frequencies. Based on the simulations in Figs. 5 and 6, the end effect correction
has a contribution at low frequency even for water and toluene. For the water case,
the discrepancy between 1D and 2D simulations reaches 0.95 % and 2 % for X and
Y components, respectively. Therefore we should not neglect this effect if we want
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Fig. 4 Simulated 3ω voltage components for hydrogen gas at atmospheric pressure
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Fig. 5 Simulated 3ω voltage components for liquid water

measurements of high accuracy using a short-hot-wire thermal conductivity cell. For
the gaseous cases shown in Figs. 3 and 4, the end effect is greater than that for liquids
due to the high thermal diffusivities. Especially for the hydrogen case (Fig. 4), up to
100 Hz, the end effect is very important. It is also worth noting that for the same current
(Io ≈ 12 mA), the 3ω voltages in the case of water (Fig. 5) are more than an order of
magnitude smaller than those for hydrogen (Fig. 4) and toluene (Fig. 6). This is related
to the higher thermal conductivity of water.
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Fig. 7 Deviation of two-dimensional analytical solution from one-dimensional solution for 3ω voltage
components

We also investigated the end effect correction in relation to the aspect ratio of the
wire. Figure 7 shows the percentage deviation of the 2D solution from the 1D solution
for different aspect ratios of the wire. Generally, increasing the aspect ratio leads to
an improvement in the accuracy of the 1D approximation as should be expected. For
many of the results in Fig. 7, the percentage deviation for the out-of-phase component
(Y ) is significantly larger than that of the in-phase component (X). The important
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conclusion from Fig. 7 is that for aspect ratios even as high as 5800, the end effect is
still not negligible, particularly for frequencies less than about 30 Hz. In this example,
the discrepancy is up to 2 % for the X -component and much greater for the Y -com-
ponent. For an aspect ratio as much as 10000, the deviation in the X -component is
similar to that of the aspect ratio of 5800 but the deviation of the Y -component is
smaller. Another interesting feature of Fig. 7 is that for frequencies greater than about
100 Hz, the in-phase component is slightly larger in the case of the 2D analytical
solution in comparison with the 1D solution so that the deviation becomes positive.
It is a little difficult to offer a physical explanation for this, but if low frequencies are
included in the experiment, its significance may not be high since X tends to zero at
high frequencies (e.g., Fig. 4).

4.3 End Effects for Nano-Wire Thermal-Conductivity Cells

In our previous study, we proposed that through the use of a nano-scale diameter
wire it may be possible to design an experiment where the effect of the wire heat
capacity was negligible in a low-density gas. Thus the thermal conductivity of the
gas sample could be determined via the slope of the in-phase 3ω voltage component
plotted against the logarithm of the frequency. Therefore it is interesting to investi-
gate two-dimensional effects for such a fine wire using our present solution. Figure 8
shows calculations for three different nano-wire designs. The diameters are 50 nm and
100 nm and the lengths are chosen to be 10 µm, 110 µm, and 500 µm, respectively. For
the wire 110 µm in length, the aspect ratio is about 2000. The dashed lines show one-
dimensional simulations while the solid lines show the present solution. Surprisingly,
at low frequencies, the difference between one-dimensional and two-dimensional cal-
culations is very large. As in our previous study, the one-dimensional results show
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Fig. 8 Simulated 3ω voltage components for hydrogen for the case of a nano-wire
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constant values for Y and a linear curve against the logarithm of frequency over a
wide range of frequencies for X . In contrast, at low frequencies in the two-dimen-
sional calculations, the out-of-phase component, Y tends to zero while the in-phase
component, X , takes on a constant value. Thus end effects are severe for all three cases
considered. If we compare the results in Fig. 8 with those of Figs. 4 and 7 for aspect
ratios of 1500 and 2000, we find that for a similar aspect ratio, the difference between
1D and 2D solutions is much larger for the nano-wire. Thus in Fig. 8 we find that in
spite of the promising results from the 1D simulations, due to end effects, a nano-wire
will fail to produce a linear curve in hydrogen gas at atmospheric pressure even for an
aspect ratio as large as 5000.

Figure 9 shows a nano-wire simulation for liquid water. In contrast to the hydrogen
case (Fig. 8), a linear region exists in the frequency range from 104 to 106 Hz. The
difference between Figs. 8 and 9 can be explained in terms of the differences in ther-
mal diffusivity of hydrogen and water. In the case of water, the thermal diffusivity is
several orders of magnitude lower so that the thermal penetration of the oscillation
into the fluid surrounding the wire is much smaller. Therefore, in the case of water a
longer section of the wire behaves like the one-dimensional situation. If the frequency
of the oscillation is lower, then the penetration into the surrounding fluid becomes
greater and the boundary condition at the wire ends is felt over a larger proportion
of the wire. This phenomenon is evident by comparing the low- and high-frequency
results in Figs. 8 and 9. In the low-frequency regions of Fig. 8 where X is constant, the
thermal penetration is so large that the entire wire length is influenced by the bound-
ary conditions at the ends. Therefore based on this study we can say that there are
two parameters which influence the importance of the end effect correction. They are
the aspect ratio (l/D) and the ratio of the wire length to the penetration depth of the
oscillation into the sample surrounding the wire.
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Fig. 9 Simulated 3ω voltage components for liquid water in the case of a nano-wire
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5 The Importance of the Thermal Penetration Depth

The thermal penetration depth is usually defined as a multiple of the square root of
the thermal diffusivity divided by the square root of the frequency. Here we take the
penetration depth to be given by Eq. 7. This definition is similar to that used by Cahill
[1] which is derived from a one-dimension model.

δpenetration depth =
√

αs

2ω
(7)

In the one-dimensional analysis, the penetration depth must be sufficiently larger than
the radius of the wire for validity of the truncated series approximations to the Bessel
functions K0 and K1 [1]. This should also apply in the present solution, since similar
approximations for the Bessel functions were employed in our derivation (see Appen-
dix, Eq. A10). In addition, for Eq. 3 to be valid, the penetration depth must be smaller
than the radius of the thermal conductivity cell. If we wish to neglect end effects,
the restriction must be even tighter, as indicated above in Sect. 4.3. From Fig. 9, at a
frequency of 103 Hz, the ratio l/δpenetration depth is approximately 33. Thus the present
simulation results suggest that the length of the wire divided by the penetration depth
should be at least more than about 30. Therefore tentatively, we suggest Eq. 8 as a guide
for the estimating maximum allowable penetration depth for neglecting end effects.

l

δpenetration depth
≥ 30 (8)

For convenience, Eq. 8 can be rearranged to give an estimate of the minimum frequency
for which neglecting end effects may be considered valid.

fmin = 302αs

4πl2 (9)

Using Eq. 9, the minimum frequency for case 3(l/D = 5000) in Fig. 7 is fmin =
45000 Hz. Since this frequency is beyond the straight section of the 1D curve, Eq. 9 is
consistent with the conclusions in Sect. 4.3.

Concerning the lower limit to the penetration depth, it can be observed in Fig. 9 that
the in-phase component, X becomes negative at a frequency of around 2 × 107 Hz.
For this frequency, the penetration depth is about 24 nm. Since this is less than the
radius of the wire, the limit to the validity of the approximations for K0 and K1 has
been exceeded. The same problem appears in Fig. 5 at around 350 Hz to 1000 Hz. At
f = 350 Hz the penetration depth, δpenetration depth = 5.7 µm which again is less than
the diameter of the wire itself (10 µm). A simple criterion for deciding the maximum
frequency, fmax, permitted by the present analysis is

δpenetration depth ≥ D (10)
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Based on Eq. 10, we should limit the frequency measurement in Fig. 5 to fmax =
110 Hz, where the penetration depth, δpenetration depth = 10.2 µm, to obtain a valid
result. For the same wire in air due to the larger thermal diffusivity, the upper limit to
the frequency is as much as fmax = 105 Hz (for validity of the approximations used
for the Bessel functions). However, practically, the influence of the gas properties on
the signal at such a high frequency may be negligible compared with the effect of the
wire properties. Therefore, it should be emphasized that Eq. 10 is not a criterion for
neglecting the properties of the wire. To obtain results where the high-frequency signal
is influenced significantly by the properties of the fluid then a comparison of the heat
capacity of the sample within one penetration depth, (δpenetration depth) from the wire
surface, with the heat capacity of the wire may be useful. Further discussion of the effect
of the wire heat capacity with respect to the sample properties can be found in Ref. [8].

6 Conclusion

A two-dimensional analytical solution for application of the 3ω method to measure-
ment of gas phase thermal conductivity has been derived. It includes the effects of
heat losses at the ends of the wire and the heat capacity of the wire. Simulations
of a wire 10 µm in diameter and about 15 mm in length show reasonable agreement
with experimental data for air at atmospheric pressure. For this particular design, end
effects should not be neglected from the calculation if we wish to make an accurate
measurement of gas thermal conductivity.

The aspect ratio of the wire (l/D) is not the only parameter required to justify
neglecting end effects. End effects are less important at high frequencies and less
important for low thermal diffusivity samples. We also must consider the ratio of the
wire length to the thermal penetration depth of the oscillations into the sample itself.
This effect is particularly severe for nano-scale wires. The maximum applicable fre-
quency of the present solution is also related to the thermal penetration depth of the
oscillations. If the penetration depth is less than the diameter of the wire, the present
analysis becomes invalid.

Based on this present study, we can conclude that to have a direct measurement
of the thermal conductivity of hydrogen gas at atmospheric pressure by the gradi-
ent of the in-phase 3ω voltage component versus the logarithm of the frequency is
impossible. Thus we need another method. The present two-dimensional formulation
in conjunction with a curve-fitting procedure is a likely candidate for measurement of
thermal conductivities of low-density gases by the 3ω method.

Acknowledgments This research has been conducted as a part of the “Fundamental Research Project
on Advanced Hydrogen Science” funded by the New Energy and Industrial Technology Development
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Appendix. Derivation of the 2D Analytical Solution

The partial derivatives with respect to the variable z, in Eqs. 1 and 2 can be eliminated
from the problem by applying Fourier transforms in the z direction. The finite Fourier
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transform T (r, t) of the temperature function T (r, z, t) with respect to the variable z
can be defined as [10]

T n(r, t) =
L∫

0

K (n, z)T (r, z, t)dz (A1)

with the inversion

T (r, z, t) =
∞∑

n=1

K (n, z)T n(r, t) (A2)

The kernel function appropriate for the boundary conditions specified by Eq. 4 is

K (n, z) =
√

2

L
sin(mnz); mn = (2n − 1)

L

π

2
; n = 1, 2, 3...; L = l/2 (A3)

The finite Fourier transform of Eq. 1 yields

1

r

∂T n

∂r
+ ∂2T n

∂r2 − m2
nT n − 1

αs

∂T n

∂t
= 0 (A4)

Equation 2 becomes

− λs
∂T n

∂r
|r=r0 =

√
2

L

P

2πmnr0l
− r0λwm2

n

2
T n|r=r0 − r0

(
ρcp

)
w

2

∂T n

∂t
|r=r0 (A5)

Since we are only interested in the oscillating part of the solution, we can replace P
in Eq. A5 with Pocos(2ωt) where Po = I 2

o RT /2. Moreover, since we are considering
only the steady oscillation, we can eliminate t by replacing T n in Eqs. A4 and A5 with
u(r)ei2ωt and cos(2ωt) with ei2ωt . We are then only interested in the real part of the
solution to the ordinary differential equation:

T n = REAL
(

u(r)ei2ωt
)

(A6)

Equation A4 becomes

1

r

du

dr
+ d2u

dr2 − ik2u = 0 (A7)

where

k =
(

2ω − iαsm2
n

αs

)1/2
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Equation A5 becomes

− λs
du

dr
|r=r0 =

√
2

L

Po

2πmnr0l
−

(
r0λwm2

n

2
+ ir

(
ρcp

)
w ω

)
u|r=r0 (A8)

The general solution to Eq. (A7) in terms of Bessel functions is

u = Q1 Io(kri1/2) + QK0(kri1/2)

When r → ∞, Io(kri1/2) → ∞, therefore Q1 = 0 then

u = QK0(kri1/2)

Applying Eq. A8 to find Q, we obtain

u =
(√

2

L

Po

2πmnl

)
K0

(
kri1/2

)
(

λskr0i1/2 K1
(
kr0i1/2

)+
(

ir2
0

(
ρcp

)
w ω + r2

0 λwm2
n

2

)
K0

(
kr0i1/2

))

(A9)

We now make use of the following approximations for the Bessel functions.

K1(kr0i1/2) = 1

kr0i1/2 + . . . (A10a)

K0

((
2ω − iαsm2

n

αs

)1/2

r0i1/2

)
= −

(
ln

(
r0

2

(
i2ω

αs
+ m2

n

)1/2
)

+ γ − · · ·
)

(A10b)

Equation A10b can be rewritten as

K0

((
2ω − iαsm2

n

αs

)1/2

r0i1/2

)
= −

(
ln

(
r0

2

(
4ω2

α2
s

+ m4
n

)1/4
)

+ iϕ

2
+ γ − · · ·

)

where

ϕ = tan−1
(

2ω

αsm2
n

)

Substituting into Eq. A9 and evaluating at r = r0, we have

u =
√

2

L

Po

2πmnl

− (A + i B)

(C − i D)
(A11)
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where

A = ln

(
r0

2

(
4ω2

α2
s

+ m4
n

)1/4
)

+ γ

B = 1

2
tan−1

(
2ω

αsm2
n

)

C = λs − A
r2

0 λwm2
n

2
+ Br2

0

(
ρcp

)
w ω

D = r2
0

(
ρcp

)
w ωA + B

r2
0 λwm2

n

2

The complex number can be removed from the denominator of Eq. A10 using

(
1

C − i D

) (
C + i D

C + i D

)
=

(
C + i D

C2 + D2

)

then

u =
√

2

L

Po

2πmnl(C2 + D2)
[(B D − AC) − i(AD + BC)]

Using Eq. A6, we obtain

T n =
√

2

L

Po(B D − AC)

2πmnl(C2 + D2)
cos 2ωt +

√
2

L

Po(AD + BC)

2πmnl(C2 + D2)
sin 2ωt

Applying the inverse Fourier transform gives the steady oscillation component of the
temperature.

T =
∞∑

n=1

K (n, z)

(√
2

L

Po(B D − AC)

2πmnl(C2 + D2)

)
cos 2ωt

+
∞∑

n=1

K (n, z)

(√
2

L

Po(AD + BC)

2πmnl(C2 + D2)

)
sin 2ωt

Integrating to find the average oscillating temperature over the length of the wire gives

Tavg = 4Po

πl3

∞∑
n=1

1

m2
n

(
(B D − AC)

(C2 + D2)

)
cos 2ωt + 4Po

πl3

∞∑
n=1

1

m2
n

(
(AD + BC)

(C2 + D2)

)
sin 2ωt

To determine the voltage, we make use of the temperature resistance relationship for
the wire

RT = R0C (1 + β(T0 + T )) (A12)
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Multiplying the resistance by Io cos ωt and substituting Po = I 2
o RT /2, we can obtain

3ω voltage components as follows

VX = I 3
o R0C RT β

πl3

∞∑
n=1

1

m2
n

(
(B D − AC)

(C2 + D2)

)
cos 3ωt

VY = I 3
o R0C RT β

πl3

∞∑
n=1

1

m2
n

(
(AD + BC)

(C2 + D2)

)
sin 3ωt

(A13)
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